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Turbulent transport in premixed flames

By C. J. Rutland 1 AND R. S. Cant 2

Simulations of planar, premixed turbulent flames with heat release were used

to study turbulent transport. Reynolds stress and Reynolds flux budgets were

obtained and used to guide the investigation of important physical effects. Essen-

tially all pressure terms in the transport equations were found to be significant. In

the Reynolds flux equations, these terms are the major source of counter-gradient
transport. Viscous and molecular terms were also found to be significant, with

both dilatationM and solenoidal terms contributing to the Reynolds stress dissipa-

tion. The BML theory of premixed turbulent combustion was critically examined

in detail. The BML bimodal pdf was found to agree well with the DNS data. All

BML decompositions, through the third moments, show very good agreement with

the DNS results. Several BML models for conditional terms were checked using the
DNS data and were found to require more extensive development.

1. Introduction

The use of DNS to study turbulent premixed flames has proved to be very suc-

cessful. Most of the previous work in this area has focused on turbulence effects on
the flame structure and statistics. This has provided invaluable information and in-

sight for formulating turbulent combustion models for the mean reaction rate (Bray
& Cant, 1991, Trouv$ & Poinsot, 1993).

As combustion models have advanced it is apparent that turbulence models re-

quire more attention. Most modern turbulent combustion models rely heavily on
mixing and time-scale (strain rate) information from the turbulence models. Thus,

it is critical to understand how turbulent transport is affected by premixed com-
bustion.

A model formalism developed by Bray, Moss, and Libby (1985) provides a highly
developed theoretical basis for turbulent premixed flames. It is based on a presumed,

bi-modal pdf of the reaction progress variable that is readily obtained using DNS

simulations. The BML theory has proved successful in predicting several properties

of premixed flames including counter-gradient transport (Libby & Bray, 1981).

The purpose of the current work is to study the major physical effects of premixed
flames on turbulent transport in the context of the BML formalism. The BML

theory results in decompositions of higher moments in terms of conditional lower

moments. This approach simplifies closure and is examined in detail. A variety
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of terms in the BML theory require modeling approximations and these were also

investigated. To provide data for this study, a direct simulation was made of a
planar, turbulent premixed flame with heat release.

1.1. Simulation method and parameters

The flow configuration represents a planar turbulent flame shown schematically

in Fig. 1. Turbulent flow enters at the left, passes through the flame brush, and exits
at the right. The spanwise boundaries (y, z) are periodic and the flow is considered

to be homogeneous in these directions. This configuration simplifies analysis of the
results because most of the statistical information varies only in the streamwise

direction.

_ Turbulent I I

Flame Brush-_ _

Turbulent Convectiv---  

,n.ow ! Ou.,ow
"x I

>

FIGURE 1. Schematic drawing of the computational domain and turbulent flame

brush. The domain size is 5 x 21r x 2zr and the grid size is 251 x 128 x 128.

The flame is considered to be premixed with a simple, single step, global reaction

rate controlled by Arrhenius kinetics. Since the issues of interest concern only flame-
turbulence interaction, acoustic energy is assumed to be unimportant and is removed

from the equations using the low Mach number approximation (McMurtry et al.,

1986). However, the reaction is exothermic and heat release effects are retained

through density variations in both time and space. It is also assumed that the
Lewis number is unity and that Soret and Dufour effects are negligible. This results

in the following set of equations:

Op Opu..__A
+ 0=, = o (1)

(gpUi OpUjUi Op 07"ij
-T + a=---Z= - a=--S+ o=---T (2)
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where

Op___T+ Opuj____T= 1 02T + &
Ot Oxj RePr OxjOz i

(3)

ro = [kox, + ox ] j (4)

p T+I = 1 (5)

& = B'p(1 - T)exp k, 1 - a(1 - T)) (6)

The equations have been non-dimensionalized using the laminar flame speed, the
domain size in the spanwise direction, the inlet density, and the inlet and adiabatic

flame temperatures. The non-dimensional temperature varies between 0 and 1.

Thus, for these unity Lewis number simulations, temperature is equivalent to the

reaction progress variable, c.

The equations axe solved using Fourier pseudo-spectral methods for the spanwise

derivatives and a sixth order, compact finite difference scheme (Lele, 1990) for
the streamwise derivatives. Heat release in the flame precludes the use of Fourier
methods in the streamwise direction.

The low Mach number approximation results in an elliptic aspect to the problem

that is satisfied using a Poisson equation derived from the pressure gradient and the
continuity equation. The solution is obtained on a pressure grid that is staggered

only in the streamwise direction to avoid difficulties with pressure boundary con-

ditions. Time integration is carried out using a combination of explicit 3rd-order
compact Runge-Kutta and implicit Crank-Nicolson methods. The viscous and dif-

fusion terms are treated primarily with the implicit method, and the non-linear

terms are integrated with the explicit method.

The turbulent inflow boundary is simulated by a pre-computed isotropic tur-

bulent field. This turbulent field is generated using a specified energy spectrum,

continuity, and random phases. The energy spectrum for the current work is given
by (Schumann 8z Patterson, 1978):

E(k) = Co - (7)

where Co = 3.0 and ko = 5.0. Using a n approach developed by Lee et al. (1991),
velocities are interpolated onto a plarie moving through the isotropic field. This
plane is used as the inflow boundary in the flame calculations. The outflow boundary

uses a convection condition with corrections for global mass conservation (Rutland
et al., 1989). Additional information about the numerical methods can be found in
Zhang (1994).

The problem parameters were chosen to satisfy several constraints. The pri-
mary consideration was to remain in the thin flame regime in which local, internal
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flame structure is not significantly affected by the turbulence. From previous work

(Rutland et al., 1989), it was determined that the simulated flames are thin if the
Karlovitz number, Ka, is approximately one or less, where:

Ka = _/SL (8)
_/u'

Since at least 15 grid points are required to resolve the laminar flame structure,
the thin flame requirement sets the basic grid spacing. In other words, grid reso-

lution of the flame is more stringent than grid resolution of the turbulence. The
flame was initiated as a laminar flame in a laminar flow field at the midpoint of the

domain in the x-direction. At the start of the simulations, the turbulence at the

inlet was rapidly, but smoothly, ramped-up to the inlet values reported in Table 1.
As the calculation proceeded in time, the turbulence and flame interacted until a

fairly stationary turbulent flame developed.

Table 1: Simulation and data set parameters

Problem parameters :

a, heat release parameter, Eq. (5) 0.7; (r = 2.3)

/3, activation energy parameter, Eq. (6) 6.0

B*, pre - exponential parameter, Eq. (6) 1225.9
Re, scaling Reynolds number, Eq. (3) 30

Pr, Prandtl number 0.7

Inlet turbulence parameters :

_¢, kinetic energy 3.0
,_, Taylor microseale 0.18

L, integral length scale 1.35

ReL, integral scale Reynolds number 56.7
Integral time scale 0.964

Data set information

time (non - dimensional) 4.57

time (turn over) 4.73
laminar flame thickness 0.173

turbulent flame speed 2.03
turbulent flame brush location z _ 1.0 to 4.4

2. Reynolds stress budget

In the one-dimensional turbulent flame configuration being studied, spanwise

derivatives of mean quantities are zero. The primary Reynolds stress transport

equation is for the (i,j) = (1, 1) term:

.,_,, _-.__,,_,-----7= 2pu'_'u;'O!_- pu_u_ ua 0
Opuxu a 0 2u,,'_p + 2u_, r,kltp'ttl'tt I 0 tt It n

" 0t + 0zl Ozl lOzl 0zk (9)
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In this basic form of the equation, the pressure and viscous terms have not been

decomposed. Fig. 2 shows how the terms vary through the flame brush. We have

adopted the convention that terms are plotted with their signs. Thus, terms from
the right hand side of an equation are positive in the plots when the term is a source

of the conserved quantity on the left hand side of the equation.
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FIGURE 2. Reynolds stress budget, Eq. (9): convection term (--), production

term (..... ), triple correlation ( ..... ), veloclty-pressure gradient (........ ),
viscous term (...... ), unsteady term (..... ), unclosed term ( ..... ).

The Reynolds stress budget in Fig. 2 includes the unsteady term and the 'un-

closed' amount in the budget. The magnitude of the unclosed quantity is negligible

except in the latter part of the flame brush. This comes from errors in estimating
the unsteady term via a simple finite difference when density changes. The unsteady

term is still significant, indicating that there is some growth in the flame brush as

it moves towards higher turbulence levels. Despite the relatively large unsteady
term, it is believed that the Reynolds stress budget accurately reflects the relative

importance and magnitudes of the various terms.

Fig. 2 shows that the pressure term is the dominate source of turbulence. The

major sinks are the dissipation and 'production' terms. Note that in this context the

production term actually represents mean dilatation since there is no mean shear. In

the following paragraphs, the pressure and viscous terms are decomposed following
conventional procedures in second moment modeling (Jones, 1980). While there
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is some indication that this approach could be revised for reacting flows (Strahle,

1983), we follow the convention of Bray et aI. (1985).
The pressure terms are dominant sources of turbulence in the flame brush. Stan-

dard decomposition first separates the mean and fluctuating pressure. Then, the

fluctuating term is rewritten as a transport term, a pressure-strain term, and a

pressure dilatation term:

-_ lazl azl +_11+_Pazk

\o + o : - -3P-g-fi k

where

(10)

(11)

Fig. 3 shows the variation of the pressure terms through the flame brush. The
dominant terms appear to be the mean pressure term and the pressure transport

term. The mean pressure gradient is always positive and increases turbulence. The

pressure transport term changes sign from positive in the leading half of the flame
brush to negative in the trailing half. The pressure dilatation is also an important

source of turbulence throughout the flame brush. The pressure strain is fairly small

and oscillates around zero through the flame.
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FIGURE 3. Pressure terms in the Reynolds stress budget, Eq. (10): total velocity-

pressure gradient (_), mean pressure gradient (..... ), pressure transport

( ..... ), pressure strain (........ ), pressure dilatation (...... ).
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In general, these results justify the standard decomposition for the pressure term.

The mean pressure gradient is significant and can be obtained directly in second

moment models. The pressure strain is small so that its modeling should be less
critical in the flame zone. Pressure dilatation is important and new models have

been suggested from other DNS results (Zhang & Rutland, 1994). The most trou-
blesome term is the pressure transport term. It is unlikely that combining this

term with other transport terms in a gradient diffusion model will be satisfactory
in premixed flames.

The major sinks for turbulence are the mean dilatation and the viscous terms.

Since the mean dilatation is readily obtained in second moment models, we will

focus only on the viscous term. Conventional decomposition similar to that used
for the pressure term leads to

Orlk 2Ou'l'n_ Ou" 2 , 0 "
= 2_-g :-x - Hn - _ri.k u,.2ui' 8_ 0 _k o zk 0 *k (12)

where

0 u'! ,9 u" 2 0 u"= _
nij ----r! - -1-1- '- i , (13),k0xk rJk_-__k _r;._T_-_k_,i

This gives a turbulent transport term, a mean viscous term, a deviatoric term

(H/j), and the dissipation function. Note that in the viscous stress, rlj is sepa-
rated into a mean and fluctuating term using standard averaging instead of Favre

averaging. This facilitates the separation of terms used in Eq. (12).

The variation of viscous terms through the flame brush are plotted in Fig. 4.

This shows that the dissipation function dominates and the mean term is small, as
expected. Interestingly, the transport term and the deviatoric term tend to have

opposite signs and nearly balance each other in the leading half of the flame. It

is unclear why this occurs. Recent work by Antonia et al. (1994) indicate that

the anisotropy tensor for the dissipation function varies as the Reynolds stress

anisotropy. This suggests that IIij might follow the Reynolds stress anisotropy.

However, this was not found in the current reacting flow dataset since the Reynolds
stress anisotropy increases through the flame brush while Hij decreases slightly.

Since the dissipation function dominates the viscous term, it is examined in more

detail. This is facilitated by separating the term into solenoidal and dilatational
terms as follows:

where

1(o u; 1,
= -5 \Oz_ + OxiJ --gO,hi

(14)

(15)

o' - o _,_ (i8)
0 xk

i ¢
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FIGURE 4. Viscous terms in the Reynolds stress budget, Eq. (12): total viscous

term (.--), viscous stress transport ( ..... ), mean viscous stress gradient term

(..... ), deviatoric term (........ ), dissipation function (...... ).

This result uses the symmetry of r[j and the relationship:

-g'h" = g'h' (17)

Note that the solenoidal term is not purely homogeneous. However, comparisons

with the homogeneous dissipation calculated using enstrophy have shown the non-

homogenous contributions to be small in the current data set. Thus, the main
contribution to the solenoidal term is from vorticity.

Fig. 5 shows the variation of the dissipation terms through the flame brush. The
dilatational dissipation is significant throughout and dominates in the leading half
of the flame brush. The solenoidal dissipation becomes significant in the latter half

of the flame brush. This was found to coincide with increasing vorticity generation

by baroclinic torque.
Since the only dilatation in the flow occurs at the local flame sheet, the di-

latational dissipation comes exclusively from this region. This was confirmed by
evaluating the dilatational dissipation conditioned on the progress variable so that
contributions from the reactants, flame zone, and products could be determined.

This is important since the modeling of terms that are due to the local flame sheet
can be fairly straightforward provided the mean reaction rate (or flame sheet den-

sity) is known.

\
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FIGURE 5. Dissipation function in the Reynolds stress budget, Eq. (14): total dis-
sipation function (--), dilatational dissipation (..... ), solenoidal dissipation
(..... ).
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FIGURE 6. Reynolds flux ]l = pu'l'c'; vs. distance x through the flame. Positive

values indicate the presence of counter-gradient transport.
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3. Scalar flux budget

The existence of counter-gradient transport in turbulent premixed flames has been

confirmed both by experiment (Moss, 1980) and by theoretical analysis (Libby &

Bray, 1981). Turbulent transport of heat and mass is found to occur in a direc-
tion opposite to that indicated by the sign of the mean gradient. In the present

simulations this is equivalent to counter-gradient transport of the reaction progress

variable c, whose mean gradient is positive in the z-direction and identically zero in

the other two directions. Thus counter-gradient transport corresponds to positive

values of the x-wise component of the turbulent Reynolds flux of reaction progress

variable ]1 = pu_'c"/_.

A plot of this quantity is shown in Fig. 6, where it is evident that strong counter-

gradient transport is indeed present throughout almost the entire flame brush, ex-
cept for a small region at the leading edge in which gradient transport prevails.

This result is consistent with previous findings (Libby, 1985).

It is possible to investigate the mechanisms behind the occurrence of counter-

gradient transport by examining the budget of the Reynolds flux ]a. The balance

equation for ]1 may be written as

0 t_fik]l 0 _ 0 fil _ " "-"_ opuku]c+ = + uTw
Ot Ozk Ozk Ozk Ozk

(z) (ix) (i) (ii) (iii) (iv)

-c" o c,, I Orlk ,,Os-;h-- - to,,--- - (18)

(v) (vi) (vii) (viii)

Each term in this equation was evaluated individually from the DNS data.set and

all are plotted in Fig. 7, with signs included as they appear in the equation, It should

be noted that the simulated flame is not yet statistically stationary, but the budget

is balanced within statistical error by the inclusion of the non-stationary term. It

is clear from the figure that the dominant terms in the budget are those involving

the pressure. The mean pressure term (v) is largest over more than half of the
flame brush while the fluctuating pressure term (vi) is also significant, particularly

over the forward portion of the flame brush. Both tend to promote counter-gradient

transport by contributing towards positive values of the Reynolds flux. These results

lend support to the theory that counter-gradient transport is produced by the local

pressure gradient acting preferentially to accelerate the light, low-density burned

gas more than the heavier unburned gas. In the present case the mean pressure

gradient is negative, i.e. decreasing in the positive z-direction. Thus the burned
gas is accelerated in the same direction and counter to the gradient of mean product

mass fraction (and progress variable). It is worth noting that this mechanism would

operate even in the absence of a contribution from the fluctuating pressure term.
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FIGURE 7. Reynolds flux budget, Eq. (18): production term (i) (--, lower),
production term (ii) (...... ), velocity-reaction rate term (iii)( ..... ), third-

moment term (iv) (........ ), mean pressure term (v) (...... ), fluctuating pressure

term (vi) (..... ), viscous term (vii) ( ..... ), molecular diffusion term (viii)

(....... ), convective term (ix) ( ......... ), non-stationary term (x) (-- ,
upper).

The role of this term in further promoting counter-gradient transport is clear from

the present results and indicates that this term is not negligible in this context.

None of the other source terms in the budget of Reynolds flux appears individ-
ually to exert a major influence on turbulent transport. The pressure terms are

balanced by a combination of the other terms and there is no other dominant effect.

Nevertheless it is interesting to examine the velocity-reaction rate term (iii) and

the dissipation rate of the scalar flux (terms vii and viii). Both of these terms are

driven by direct molecular effects in the presence of reacting gas and both are sub-

ject to the need for closure modeling. The velocity-reaction rate term is plotted in
Fig.8. This term is non-zero only within the flame brush and appears noisy due to

the relative lack of statistical sample associated with the presence of reaction. The

correlation becomes negative towards the rear of the flame, reflecting the tendency

of the velocity fluctuation magnitude to increase even as the reaction rate is falling.
The dissipation terms account for the removal of Reynolds flux due to viscous

effects (term vii) and to molecular diffusion (term viii) and are plotted in Fig. 9.

Both are non-zero only in the presence of reaction and are noisy for reasons given
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FIGURE 8. The velocity-reaction rate correlation u_'w (term iii) vs. distance x

through the flame.
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above. Each has a predominantly negative sign and acts as a mild sink throughout

the flame brush. In the present case their magnitudes are very similar indicating

that viscous and diffusional effects are of roughly equal importance in this flame.

4. BML Decompositions

The BML formalism is based on the premise that the laminar flamelets occurring

within the turbulent flame brush are thin in the sense that the pdf of the progress

variable is dominated by the entries at zero and unity, with little contribution
from the interior part of the distribution. This has been checked using DNS by

evaluating the weight functions a,/_ and 7 corresponding respectively to unburned

reactants, fully-burned products and material undergoing reaction. Results for these

quantities are shown in Fig. 10. It is clear that 7 is very much smaller than a and
/_ throughout almost the entire flame brush, providing emphatic confirmation that

the BML assumption is indeed valid in this flame.

The only exceptions occur near to the leading edge of the flame brush where it is

clear that/3 ---, 0 faster than % and at the trailing edge where a _ 0 faster than %
The maximum value of _/is about 0.15, attained near the center of the flame brush.

Terms multiplying 3' in several of the key BML expressions have been evaluated

also and are generally found to be small.
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The weight functions _, 3 and 3' in the BML pdf of progress variable c

plotted against distance x through the flame. Reactant weight function _ (_),

product weight function/_ (..... ), reacting material weight function 7 (..... ).
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The BML formalism may be used to decompose all of the second- and third-

moment unconditional statistics of interest in terms of conditional statistics of lower

order. For example, a covariance such as the Reynolds flux 971may be expressed in
terms of a difference of conditional means:

L = pu_'e,/_ = e(1 - e)(_,p - _IR) (19)

where subscripts P and R indicate product and reactant, respectively. The condi-

tional reactant and product mean velocities are shown in Fig. 11. The abrupt fall
to zero at the ends is due to a lack of statistical sample: there is no more reac-

tant (product) on which to condition as c ---, 1(0). It is interesting to note that
there is no tendency of the conditional velocities or their difference to approach

some asymptotic value at either limit. Checks were carried out to ensure that the
results were insensitive to the choice of conditioning levels: this was confirmed for

threshold values of c set at (0.01, 0.99), (0.05, 0.95) and (0.10, 0.90). Sample sizes
were also checked and found to be adequate for the evaluation of the conditional

means. Clearly the conditional difference fi 1P - fixR is positive throughout most of
the flame brush, implying through Eq.(19) that the Reynolds flux is positive and

that counter-gradient diffusion is to be expected.
The BML formalism becomes particularly valuable in treating the unclosed third-

moment correlations which appear in the balance equations for the Reynolds stresses

and fluxes. Expressions for these terms are given in Bray et al. (1985) as

pu_'u_u_/_ = fi(1 - fi)[(1 - 2fi)(flip - fiiR)(flip -- ujR)(ukP - fikR)

+

+(I " ' ' ' -'' '- c) uiujukR + cuiujUkp + 0 (7)

(20)

and
p_ ,,. ,,_,, 1=
•._ ,.,,_/. = e(1 - e)[(1 - 2e)(a., - _,n)(_i_' - _R)

(21)
+_,,p(_ -u_u_R)l+O(-r)

In each ease the third-moment quantity is decomposed as a series of terms involving

mainly first- and second-moment conditional differences. This decomposition is
central to the BML closure approach since only the conditional quantities need to be

modeled, and these contain no contribution arising from density change. In order to

check the decomposition, every quantity in each of these expressions was evaluated
from the DNS database, and comparisons between the exact and the decomposed
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FIGURE 11. Conditional reactant and product mean velocities fiaR (--) and
flip (..... ) plotted against x distance x through the flame.

results are shown in Fig. 12a for the Reynolds stress component " "- ,/=puaulul/p and in
Fig. 12b for the flux component - ,,- ,,_,,z=pulux_ /t,. Agreement is very good in each case

over almost the entire flame brush, and the accuracy of the BML decomposition
is verified. The third-moment stress remains non-zero outside the flame brush

due to contributions from the conditional third moments. The third- moment flux

by contrast is non-zero only within the flame brush, and there are discrepancies

between exact and decomposed values at the leading and trailing edges. These are
due once again to a lack of conditional sample as c ---+0, 1. All ten independent

components of the third-moment stress were evaluated and compared, as were all

six independent components of the third-moment flux, and the same degree of
agreement was apparent in all cases.

5. BML Modeling

BML closure modeling is based on balance equations for the second-moment

Reynolds stresses and fluxes. These balance equations contain divergences of the
third-moment terms as decomposed in Eqs. (20) and (21) above, and hence closure
models are required for the unknown conditional differences. The conditional ve-

locity differences (ulP - filR) may be evaluated from the Reynolds fluxes ]i using
Eq. (19), and hence require no modeling.

The only terms remaining to be modeled are the differences of the conditional
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Errors in the modeled differences in conditional Reynolds stresses,

), 22 (..... ), 33 ( ..... ). The errors are normalized by the
difference between the maximum and minimum value over the whole range.

second-moment and third-moment stresses. A simple linear fit to model the differ-

ence in second moment stress has been proposed by Bray et al. (1985):

(_ -_ _ _,[(1-_1)_+(,;o-1)(1-_)] pu_'u_' (22)

where the constants _;0 and I¢1 are allowed to vary with (i,j). This model was moti-

vated by the requirement that the total Favre-averaged Reynolds stresses reduce to

the conditional stresses at the edges of the flame brush: _ -* 0, 1. This requirement
also provides a means to evaluate the t¢ terms.

The _; terms were evaluated using the DNS data and the results are shown in

Fig. 13. The figure shows the error of the modeled terms for the three normal

stresses. By construction, the errors go to zero near the boundaries of the flame.
The exact limits _ --* 0, 1 could not be used to find the _¢terms since the sample rates

were too low. However, at least for the normal stresses, the I¢ values approached

the limits fairly smoothly and were readily estimated. The errors plotted in Fig. 13

show that a linear fit is not very accurate. The terms would be better modeled by
a second order fit for the tangential stresses and a third order fit for the normal

stresses. However, further theoretical work is needed before such ad-hoc models are

developed.

A generalized gradient-transport model has been proposed for modeling the dif-

ferences of the conditional third-moment stresses (Bray et al. 1985):
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(I - e)-'-'-' ., , , p kum (23)
uiUjakR + CUiUjUkp _-_ --C 8 _ p _ Xm

All of the terms in Eqs. (20) and (21) which require modeling according to eqs.(22)

and (23) have been evaluated from the DNS data and assembled to yield modeled

third-moment stress and flux components pululul/p--"- "- "_= and pululc,,_,l_/p, and the re-
sults are plotted in Fig. 14. The agreement of the modeled terms with their exact

equivalents is poor and contrasts strongly with the excellent agreement obtained

using the BML decomposition only. Both the conditional stress sub-model and the

third-moment gradient diffusion sub-model are seen to be seriously deficient, fail-

ing to capture even the qualitative trends of the exact third-moment stress. Some
evidence of the correct trend is present in the comparison for the third-moment

flux, but quantitative agreement is not achieved. Again, all ten independent third-

moment stresses and all six independent third- moment fluxes were evaluated, but

the agreement remained comparably poor in all cases. Clearly the present sub-

models are in need of considerable improvement.

6. Conclusions

The DNS data have been used to identify several important physical effects re-

garding turbulent transport occurring in premixed flames. Probably the most sig-

nificant is counter gradient transport of the scalar flux. This was found previously
in experiments (Moss, 1980) and predicted by theoretical analysis (Libby & Bray,

1981). The DNS results help confirm that pressure effects are the major contribu-

tion to counter gradient transport.

The DNS results also revealed the importance of pressure terms in Reynolds stress

transport. The mean pressure gradient term dominates, but pressure transport and

pressure dilatation are also very important. Dissipation, which is a major sink

in the Reynolds stress budget, was found to be composed of both solenoidal and
dilatational terms. The DNS data showed both terms to be significant.

Results have been obtained from the DNS which allow thorough validation of

the BML model formalism in a statistically planar turbulent premixed flame. The

principal assumption of BML - that the pdf of the progress variable is strongly
bimodal - has been checked and found to be valid throughout the simulated flame.

All of the second-moment and third-moment Reynolds stress and Reynolds flux

components have been evaluated and compared with their equivalents obtained
using the BML formalism. Very good agreement is observed where terms obtained

through the BML decomposition are themselves evaluated from the DNS. This

confirms that BML provides a valid theoretical framework for the treatment of
premixed turbulent flames.

By contrast, agreement is poor where the decomposed terms are evaluated using
currently available model expressions. Thus, while the framework has been found

to be satisfactory, the modeling itself must be improved. Much of the information

which will be required to underpin the necessary model development is contained

within the present DNS dataset. Its exploitation will form the next major task.
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